Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 18, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Abstract Prototyping use cases for augmented reality (AR) applications can be beneficial to elicit the functional requirements of the features early-on, to drive the subsequent development in a goal-oriented manner. Doing so would require designers to identify the goal-oriented interactions and map the associations between those interactions in a spatio-temporal context. Pertaining to the multiple scenarios that may result from the mapping, and the embodied nature of the interaction components, recent AR prototyping methods lack the support to adequately capture and communicate the intent of designers and stakeholders during this process. We present ImpersonatAR, a mobile-device-based prototyping tool that utilizes embodied demonstrations in the augmented environment to support prototyping and evaluation of multi-scenario AR use cases. The approach uses: (1) capturing events or steps in the form of embodied demonstrations using avatars and 3D animations, (2) organizing events and steps to compose multi-scenario experience, and finally (3) allowing stakeholders to explore the scenarios through interactive role-play with the prototypes. We conducted a user study with ten participants to prototype use cases using ImpersonatAR from two different AR application features. Results validated that ImpersonatAR promotes exploration and evaluation of diverse design possibilities of multi-scenario AR use cases through embodied representations of the different scenarios.more » « less
-
The confined variational method is used to study the elastic scattering of the positron from the ground-state helium with the scattering energy in the range from 0.05 eV to 11.02 eV. Describing the correlation effect with explicitly correlated Gaussians, we obtain accurate phase shifts, S-wave scattering length, elastic scattering cross sections, and annihilation parameters for different incident momenta. Specifically, by a least-squares fit of the data to the effective-range theory, we determine the room temperature annihilation parameter Zeff = 3.955, which is in perfect agreement with the measured result of 3.94 ± 0.02 [J. Phys. B 8, 1734 (1975)].more » « less
-
Specific to the topic of oxidation–reduction (redox), teachers are obligated by the discipline to prioritise symbolic traditions such as writing equations, documenting oxidation states, and describing changes ( e.g. , what undergoes oxidation/reduction). Although the chemistry education research community endorses connecting the vertices of Johnstone's triangle, how symbolic traditions undermine chemistry concept development, especially during lesson planning and teaching, is underexplored. To clarify this gap, we use the Mangle of Practice framework to unpack the clash between symbolic vs. particulate-focused instruction. We investigate teachers’ ( n = 3) co-planning and micro-teaching of a redox learning design at the VisChem Institute-2 using a narrative approach and video research methods. Our results show that the traditions of redox instruction are problematically entrenched in chemistry symbols. Mnemonics, the single replacement reaction scheme, and the written net ionic equation all constrain instruction focused on chemical mechanism and causality in various ways. We assert that the nature of redox knowledge in terms of what is worth teaching and learning must first be re-evaluated for reform-based efforts to succeed. Implications and suggestions for chemistry teaching and research at both secondary and tertiary levels are discussed.more » « less
-
Secondary chemistry teacher learning: precursors for and mechanisms of pedagogical conceptual changeDespite years of research and practice inspired by chemistry education research, a recent report shows that US secondary instruction is not aligned with current national reform-based efforts. One means to mitigate this discrepancy is focusing on pedagogical conceptual change, its precursors (higher self-efficacy and pedagogical discontentment), and the subtleties of its mechanisms (assimilation and accommodation). In this study, we investigate the final reflections of participants ( N = 35) who completed our professional development program known as the VisChem Institute (VCI). Our results show that Johnstone's triangle as well as evidence, explanations, and models can be conducive for stimulating pedagogical discontentment among VCI teachers who exhibit higher self-efficacy. In addition, how VCI teachers assimilate and/or accommodate reform-based chemistry teaching ideas problematizes conventional assumptions, broadens application of novel theories, and is germane to introductory chemistry learning environments across the world. Implications and recommendations for chemistry instruction and research at both secondary and tertiary levels are discussed.more » « less
-
Researchers have typically identified and characterized teachers’ knowledge bases ( e.g. , pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense). PedChemSense theoretically expands upon the RCM that generates actionable guidelines to support chemsistry teachers’ lesson planning. We incorporate the constructs of sensemaking, Johnstone's triangle, and the models for perspective to provide a lesson-planning mechanism that is specific, accessible, and practical, respectively. Lesson examples from our own professional development contexts, the VisChem Institute, demonstrate the efficacy of PedChemSense. By leveraging teachers’ sensemaking of the limitations and utility of models, PedChemSense facilitates teachers’ designing for opportunities to advance their students’ chemistry conceptual understanding. Implications and recommendations for chemistry instruction and research at secondary and undergraduate levels are discussed.more » « less
An official website of the United States government
